Complexity separating classes for edge-colouring and total-colouring

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-colouring and total-colouring chordless graphs

A graph G is chordless if no cycle in G has a chord. In the present work we investigate the chromatic index and total chromatic number of chordless graphs. We describe a known decomposition result for chordless graphs and use it to establish that every chordless graph of maximum degree ∆ ≥ 3 has chromatic index ∆ and total chromatic number ∆+1. The proofs are algorithmic in the sense that we ac...

متن کامل

Edge colouring by total labellings

We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, . . . , k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its two endvertices. We define χt(G) to be the smallest integer k for which G has an edge-colouring ...

متن کامل

On Edge-colouring Indiierence Graphs on Edge-colouring Indiierence Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G)+1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indi...

متن کامل

List edge-colouring and total colouring in graphs of low treewidth

We prove that the list chromatic index of a graph of maximum degree ∆ and treewidth ≤ √ 2∆ − 3 is ∆; and that the total chromatic number of a graph of maximum degree ∆ and treewidth ≤ ∆/3 + 1 is ∆ + 1. This improves results by Meeks and Scott.

متن کامل

Vertex-Colouring Edge-Weightings

A weighting w of the edges of a graph G induces a colouring of the vertices of G where the colour of vertex v, denoted cv, is ∑ e3v w(e). We show that the edges of every graph that does not contain a component isomorphic to K2 can be weighted from the set {1, . . . , 30} such that in the resulting vertex-colouring of G, for every edge (u, v) of G, cu 6= cv.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Brazilian Computer Society

سال: 2011

ISSN: 0104-6500,1678-4804

DOI: 10.1007/s13173-011-0040-8